Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
COVID-19 Metabolomics and Diagnosis: Chemical Science for Prevention and Understanding Outbreaks of Infectious Diseases ; : 63-89, 2023.
Article in English | Scopus | ID: covidwho-20240343

ABSTRACT

An immunosensor is a biosensor that detects antigen interactions using a particular antibody bound on the transducer's surface. These biosensors have high selectivity and sensitivity due to their interaction specificity. Owing to this characteristic, this type of sensor is attractive for several applications, especially in the medical area and bioanalysis. Among the types of immunosensors, electrochemical immunosensors have gained prominence due to their simplicity and portability, potentially enabling in situ detection as promising characteristic for analysis in emergency care. In this chapter, the potential of electrochemical immunosensors is presented, especially in applications related to clinical examinations and mainly in the diagnosis of SARS-CoV-2. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023. All rights reserved.

2.
Lecture Notes in Electrical Engineering ; 999:16-21, 2023.
Article in English | Scopus | ID: covidwho-20233756

ABSTRACT

Real-time detection of airborne infection agents present in human breath and environmental airways, such as the human respiratory Coronavirus, is important for public health. For this, a model label-free immunosensor, based on multi-walled nanotubes (MWNT)-based screen-printed graphite electrodes (SPEs), was proposed and studied. For sensing applications, MWNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used for antibody immobilization, with retention of its selectivity for potential immunosensors development. In order to verify the selectivity of the selected primary antibody (anti-CoV 229E antibody) and the effective immunocomplex formation (antigen-antibody), an in-depth voltammetric characterization of MWNT-SPEs interface was carried out during the multistep fabrication of CoV immunosensor using [Fe(CN)6]3−/4− as an electroactive probe.After that, the analytical robustness of the performances of these immunosensing platforms was estimated and verified. Indeed, a nanomolar range detection limit (180 TCID50/mL)g/mL) with excellent reproducibility (RSD% = 8%) was obtained. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

3.
Microchemical Journal ; : 108933, 2023.
Article in English | ScienceDirect | ID: covidwho-20230746

ABSTRACT

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is secreted in response to an acute phase inflammation in patients who are suffering from heart failure (HF). The aim of this work was to develop an electrochemical biosensor for determining salivary IL-10 levels. Biofunctionalization strategy was improved through the use of copper-free click chemistry for the developed sensor due to its advantages, leading to high quantitative yields of stable triazoles, rapid reaction, no cytotoxic Cu(I) catalyst requirement, and high specificity of cyclooctynes toward azides. The approach involved in binding of dibenzocyclooctyne acid (DBCO-COOH) to thiol-azide assembled gold microelectrodes, later capturing the monoclonal IL-10 antibody (IL-10 mAb), and ultimately allowing direct detection of IL-10 antigen. Fourier transform infrared spectroscopy (FTIR) and nanoplotter associated with fluorescence microscopy methods have been employed to analyze and prove the biofunctionalization of the gold microelectrodes. Moreover, the electrochemical impedance spectroscopy (EIS) technique was used for detecting IL-10 antigen. The developed immunosensor showed a semi-logarithmic linear range, from 0.1 pg/mL to 5 pg/mL with R2 = 0.9815 and a limit of quantitation (LOQ) of 0.1 pg/mL with relative standard deviation (RSD) of 10.67%. The specificity of the immunosensor was evaluated using an inflammatory cytokine, and none of it generated detectable EIS signals. Finally, the successful analysis of saliva samples from a healthy volunteer without Coronavirus (COVID-19) infection demonstrated the usefulness of the developed immunosensor.

4.
Talanta ; 260: 124604, 2023 Aug 01.
Article in English | MEDLINE | ID: covidwho-2316564

ABSTRACT

Herein, a ternary PdPtRu nanodendrite as novel trimetallic nanozyme was reported, which possessed excellent peroxidase-like activity as well as electro-catalytic activity on account of the synergistic effect between the three metals. Based on the excellent electro-catalytic activity of trimetallic PdPtRu nanozyme toward the reduction of H2O2, the trimetallic nanozyme was applied to construct a brief electrochemical immunosensor for SARS-COV-2 antigen detection. Concretely, trimetallic PdPtRu nanodendrite was used to modify electrode surface, which not only generated high reduction current of H2O2 for signal amplification, but also provided massive active sites for capture antibody (Ab1) immobilization to construct immunosensor. In the presence of target SARS-COV-2 antigen, SiO2 nanosphere labeled detection antibody (Ab2) composites were introduced on the electrode surface according sandwich immuno-reaction. Due to the inhibitory effect of SiO2 nanosphere on the current signal, the current signal was decreased with the increasing target SARS-COV-2 antigen concentration. As a result, the proposed electrochemical immunosensor presented sensitive detection of SARS-COV-2 antigen with linear range from 1.0 pg/mL to 1.0 µg/mL and limit of detection down to 51.74 fg/mL. The proposed immunosensor provide a brief but sensitive antigen detection tool for rapid diagnosis of COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , SARS-CoV-2 , Immunoassay , Hydrogen Peroxide/chemistry , Silicon Dioxide , COVID-19/diagnosis , Antibodies , Antibodies, Immobilized/chemistry , Gold/chemistry , Electrochemical Techniques , Limit of Detection
5.
Anal Chim Acta ; 1265: 341326, 2023 Jul 18.
Article in English | MEDLINE | ID: covidwho-2311677

ABSTRACT

Herein, we have proposed a straightforward and label-free electrochemical immunosensing strategy supported on a glassy carbon electrode (GCE) modified with a biocompatible and conducting biopolymer functionalized molybdenum disulfide-reduced graphene oxide (CS-MoS2/rGO) nanohybrid to investigate the SARS-CoV-2 virus. CS-MoS2/rGO nanohybrid-based immunosensor employs recombinant SARS-CoV-2 Spike RBD protein (rSP) that specifically identifies antibodies against the SARS-CoV-2 virus via differential pulse voltammetry (DPV). The antigen-antibody interaction diminishes the current responses of the immunosensor. The obtained results indicate that the fabricated immunosensor is extraordinarily capable of highly sensitive and specific detection of the corresponding SARS-CoV-2 antibodies with a LOD of 2.38 zg mL-1 in phosphate buffer saline (PBS) samples over a broad linear range between 10 zg mL-1-100 ng mL-1. In addition, the proposed immunosensor can detect attomolar concentrations in spiked human serum samples. The performance of this immunosensor is assessed using actual serum samples from COVID-19-infected patients. The proposed immunosensor can accurately and substantially differentiate between (+) positive and (-) negative samples. As a result, the nanohybrid can provide insight into the conception of Point-of-Care Testing (POCT) platforms for cutting-edge infectious disease diagnostic methods.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , Molybdenum , Biosensing Techniques/methods , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2 , Electrochemical Techniques/methods
6.
Talanta ; 260: 124614, 2023 Aug 01.
Article in English | MEDLINE | ID: covidwho-2311488

ABSTRACT

A novel immunosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) for the sensitive determination of N protein of the SARS-CoV-2 coronavirus is described. For this purpose, bifunctional core@shell nanoparticles composed of a Pt-coated Au core and finally decorated with small Au inlays (Au@Pt/Au NPs) have been synthesized to act as ECL acceptor, using [Ru (bpy)3]2+ as ECL donor. These nanoparticles are efficient signaling probes in the immunosensor developed. The proposed ECL-RET immunosensor has a wide linear response to the concentration of N protein of the SARS-CoV-2 coronavirus with a detection limit of 1.27 pg/mL. Moreover, it has a high stability and shows no response to other proteins related to different virus. The immunosensor has achieved the quantification of N protein of the SARS-CoV-2 coronavirus in saliva samples. Results are consistent with those provided by a commercial colorimetric ELISA kit. Therefore, the developed immunosensor provides a feasible and reliable tool for early and effective detection of the virus to protect the population.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Gold , SARS-CoV-2 , Luminescent Measurements/methods , Biosensing Techniques/methods , Immunoassay/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Limit of Detection
7.
ACS Appl Mater Interfaces ; 15(6): 7759-7766, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2311054

ABSTRACT

Infectious agents such as viruses pose significant threats to human health, being transmitted via direct contact as well as airborne transmission without direct contact, thus requiring rapid detection to prevent the spread of infectious diseases. In this study, we developed a conductive thread-based immunosensor (CT-IS), a biosensor to easily detect the presence of airborne viruses. CT-IS utilizes an antibody that specifically recognizes the HA protein of the pandemic influenza A (pH1N1) virus, which is incorporated into the conductive thread. The antigen-antibody interaction results in increased strain on the conductive thread in the presence of the pH1N1 virus, resulting in increased electrical resistance of the CT-IS. We evaluated the performance of this sensor using the HA protein and the pH1N1 virus, in addition to samples from patients infected with the pH1N1 virus. We observed a significant change in resistance in the pH1N1-infected patient samples (positive: n = 11, negative: n = 9), whereas negligible change was observed in the control samples (patients not infected with the pH1N1 virus; negative). Hence, the CT-IS is a lightweight fiber-type sensor that can be used as a wearable biosensor by combining it with textiles, to detect the pH1N1 virus in a person's vicinity.


Subject(s)
Biosensing Techniques , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza, Human/diagnosis , Immunoassay , Antibodies
8.
Chemosensors ; 11(4):222, 2023.
Article in English | ProQuest Central | ID: covidwho-2302712

ABSTRACT

The emergence of the SARS-CoV-2 virus and the associated pandemic has affected the entire human population. Human susceptibility to the virus has highlighted a tremendous need for affordable diagnostic systems to manage the pandemic and monitor the effectiveness of vaccination. We have developed a simple and label-free electrochemical immunosensor for the detection of human anti-SARS-CoV-2 IgG antibodies, which consists of a supporting screen-printed carbon electrode (SPCE) modified with an electrodeposited polyaniline film and glutaraldehyde, allowing effective immobilization of the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) as a biorecognition element. The impedimetric immunosensor showed a linear response over a wide concentration range of 0.01–10 μg mL−1, that is, 67 pM–6.7 nM, with a low detection limit of 25.9 pM. A dual working electrode configuration with a built-in negative control unit was demonstrated for practical field applications. The immunosensor was successfully used in a real serum sample from an infected patient and showed good reproducibility and fair agreement with ELISA. An optional amplification step with secondary goat anti-human IgG antibodies was demonstrated, resulting in an extended linear range and a detection limit as low as 0.93 pM.

9.
Microchemical Journal ; 190:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2302114

ABSTRACT

[Display omitted] • Materials have an important effect on the reliability of microfluidic systems. • Magnetic particles are widely used in the fabrication of microfluidics immunosensors. • Near field communication-integrated microfluidics will more use in the future studies. The fast diagnosis of diseases is vital in the early stages of the cure of illnesses. Although conventional procedures have been broadly employed in clinics, newly presented microfluidic microchips are becoming more attractive. The benefits of the new microfluidic system involve more fast diagnosis, the need for low patient samples and reagents, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to offer a summary of the effect of the applied nanomaterials in the fabrication of novel immunosensor-based microfluidic sticks and to carefully explore different applications of microfluidic systems in the determination of bioagents. New kinds of immunosensor-based microfluidic systems for coronavirus disease and HIV are also explored. The next types of biomedical diagnosis will mainly rely on point-of-care (POC) methods, which propose rapid and sensitive detections. However, microfluidic systems propose a high potential to fabricate reliable POC devices. [ FROM AUTHOR] Copyright of Microchemical Journal is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

10.
Bioelectrochemistry ; 152: 108438, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2294078

ABSTRACT

Antigen test kits (ATK) are extensively utilized for screening and diagnosing COVID-19 because they are easy to operate. However, ATKs exhibit poor sensitivity and cannot detect low concentrations of SARS-CoV-2. Herein, we present a new, highly sensitive, and selective device obtained by combining the principle of ATKs with electrochemical detection for COVID-19 diagnosis, which can be quantitatively assessed using a smartphone. An electrochemical test strip (E-test strip) was constructed by attaching a screen-printed electrode inside a lateral-flow device to exploit the remarkable binding affinity of SARS-CoV-2 antigen to ACE2. The ferrocene carboxylic acid attached to SARS-CoV-2 antibody acts as an electroactive species when it binds to SARS-CoV-2 antigen in the sample before it flows continuously to the ACE2-immobilization region on the electrode. Electrochemical-assay signal intensity on smartphones increased proportionally to the concentration of SARS-CoV-2 antigen (LOD = 2.98 pg/mL, under 12 min). Additionally, the application of the single-step E-test strip for COVID-19 screening was demonstrated using nasopharyngeal samples, and the results were consistent with those obtained using the gold standard (RT-PCR). Therefore, the sensor demonstrated excellent performance in assessing and screening COVID-19, and it can be used professionally to accurately verify diagnostic data while remaining rapid, simple, and inexpensive.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Sensitivity and Specificity , Immunoassay/methods
11.
Electroanalysis ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2304869

ABSTRACT

Here, a novel biosensing platform for the detection of SARS-CoV-2 usable both at voltammetric and impedimetric mode is reported. The platform was constructed on a multi-walled carbon nanotubes (MWCNTs) screen-printed electrode (SPE) functionalized by methylene blue (MB), antibodies against SARS-CoV-2 spike protein (SP), a bioactive layer of chitosan (CS) and protein A (PrA). The voltammetric sensor showed superior performances both in phosphate buffer solution (PBS) and spiked-saliva samples, with LOD values of 5.0±0.1 and 30±2.1 ng/mL, compared to 20±1.8 and 50±2.5 ng/mL for the impedimetric sensor. Moreover, the voltammetric immunosensor was tested in real saliva, showing promising results.

12.
J Biophotonics ; 16(7): e202300004, 2023 07.
Article in English | MEDLINE | ID: covidwho-2267810

ABSTRACT

The fast spread and transmission of the coronavirus 2019 (COVID-19) has become one of serious global public health problems. Herein, a surface enhanced Raman spectroscopy-based lateral flow immunoassay (LFA) was developed for the detection of SARS-CoV-2 antigen. Using uniquely designed core-shell nanoparticle with embedded Raman probe molecules as the indicator to reveal the concentration of target protein, excellent quantitative performance with a limit of detection (LOD) of 0.03 ng/mL and detection range of 10-1000 ng/mL can be achieved within 15 min. Besides, the detection of spiked virus protein in human saliva was also performed with a portable Raman spectrometer, proposing the feasibility of the method in practical applications. This easy-to-use, rapid and accurate method would provide a point-of-care testing way as the ideal alternative for current detection requirement of virus-related biomarkers.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Immunoassay/methods , Gold
13.
Biosensors (Basel) ; 13(2)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2283586

ABSTRACT

Myeloperoxidase (MPO) has been demonstrated to be a biomarker of neutrophilic inflammation in various diseases. Rapid detection and quantitative analysis of MPO are of great significance for human health. Herein, an MPO protein flexible amperometric immunosensor based on a colloidal quantum dot (CQD)-modified electrode was demonstrated. The remarkable surface activity of CQDs allows them to bind directly and stably to the surface of proteins and to convert antigen-antibody specific binding reactions into significant currents. The flexible amperometric immunosensor provides quantitative analysis of MPO protein with an ultra-low limit of detection (LOD) (31.6 fg mL-1), as well as good reproducibility and stability. The detection method is expected to be applied in clinical examination, POCT (bedside test), community physical examination, home self-examination and other practical scenarios.


Subject(s)
Biosensing Techniques , Quantum Dots , Humans , Peroxidase , Biosensing Techniques/methods , Reproducibility of Results , Immunoassay/methods , Proteins , Limit of Detection , Biomarkers
14.
Biosensors (Basel) ; 13(3)2023 Mar 11.
Article in English | MEDLINE | ID: covidwho-2274512

ABSTRACT

The evaluation of serological responses to COVID-19 is crucial for population-level surveillance, developing new vaccines, and evaluating the efficacy of different immunization programs. Research and development of point-of-care test technologies remain essential to improving immunity assessment, especially for SARS-CoV-2 variants that partially evade vaccine-induced immune responses. In this work, an impedimetric biosensor based on the immobilization of the recombinant trimeric wild-type spike protein (S protein) on zinc oxide nanorods (ZnONRs) was employed for serological evaluation. We successfully assessed its applicability using serum samples from spike-based COVID-19 vaccines: ChAdOx1-S (Oxford-AstraZeneca) and BNT162b2 (Pfizer-BioNTech). Overall, the ZnONRs/ spike-modified electrode displayed accurate results for both vaccines, showing excellent potential as a tool for assessing and monitoring seroprevalence in the population. A refined outcome of this technology was achieved when the ZnO immunosensor was functionalized with the S protein from the P.1 linage (Gamma variant). Serological responses against samples from vaccinated individuals were acquired with excellent performance. Following studies based on traditional serological tests, the ZnONRs/spike immunosensor data reveal that ChAdOx1-S vaccinated individuals present significantly less antibody-mediated immunity against the Gamma variant than the BNT162b2 vaccine, highlighting the great potential of this point-of-care technology for evaluating vaccine-induced humoral immunity against different SARS-CoV-2 strains.


Subject(s)
COVID-19 , Vaccines , Zinc Oxide , Humans , BNT162 Vaccine , SARS-CoV-2 , COVID-19 Vaccines , Seroepidemiologic Studies , COVID-19/diagnosis , Antibodies , Antibodies, Viral
15.
Sens Actuators B Chem ; 371: 132539, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2267149

ABSTRACT

In every pandemic, it is critical to test as many people as possible and keep track of the number of new cases of infection. Therefore, there is a need for novel, fast and unambiguous testing methods. In this study, we designed a sandwich-type voltammetric immunosensor based on unlabeled- and labeled with a redox probe antibodies against virus spike protein for fast and ultrasensitive detection of SARS-CoV-2. The process of the preparation of the sensor layer included chemisorption of cysteamine layer and covalent anchoring of antibody specific for the S1 subunit of the S protein. The source of the voltametric signal was the antibody labeled with the redox probe, which was introduced onto biosensor surface only after the recognition of the virus. This easy-to-handle immunosensor was characterized by a wide analytical range (2.0·10-7 to 0.20 mg·L-1) and low detection limit (8.0·10-8 mg·L-1 ≡ 0.08 pg·mL-1 ≡ 4 virions·µL-1). The utility of the designed device was also evidenced by the detection of SARS-CoV-2 in the clinical samples. Moreover, the main advantage and a huge novelty of the developed device, compared to those already existing, is the moment of generating the analytical signal of the redox probe that appears only after the virus recognition. Thus, our diagnostic innovation may considerably contribute to controlling the COVID-19 pandemic. The as-developed immunosensor may well offer a novel alternative approach for viral detection that could complement or even replace the existing methods.

16.
Biosensors (Basel) ; 12(11)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2257300

ABSTRACT

In this work, carbon dots (CDs) were synthesized by a one-step hydrothermal method using citric acid and ethylene diamine, and covalently functionalized with antibodies for the sensing of progesterone hormone. The structural and morphological analysis reveals that the synthesized CDs are of average size (diameter 8-10 nm) and the surface functionalities are confirmed by XPS, XRD and FT-IR. Further graphene oxide (GO) is used as a quencher due to the fluorescence resonance energy transfer (FRET) mechanism, whereas the presence of the analyte progesterone turns on the fluorescence because of displacement of GO from the surface of CDs effectively inhibiting FRET efficiency due to the increased distance between donor and acceptor moieties. The linear curve is obtained with different progesterone concentrations with 13.8 nM detection limits (R2 = 0.974). The proposed optical method demonstrated high selectivity performance in the presence of structurally resembling interfering compounds. The PL intensity increased linearly with the increased progesterone concentration range (10-900 nM) under the optimal experimental parameters. The developed level-free immunosensor has emerged as a potential platform for simplified progesterone analysis due to the high selectivity performance and good recovery in different samples of spiked water.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Carbon/chemistry , Progesterone , Gold/chemistry , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Immunoassay , Antibodies
17.
Diagnostics (Basel) ; 12(11)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2249620

ABSTRACT

The continued circulation of SARS-CoV-2 virus in different parts of the world opens up the possibility for more virulent variants to evolve even as the coronavirus disease 2019 transitions from pandemic to endemic. Highly transmissible and virulent variants may seed new disruptive epidemic waves that can easily put the healthcare system under tremendous pressure. Despite various nucleic acid-based diagnostic tests that are now commercially available, the wide applications of these tests are largely hampered by specialized equipment requirements that may not be readily available, accessible and affordable in less developed countries or in low resource settings. Hence, the availability of lateral flow immunoassays (LFIs), which can serve as a diagnostic tool by detecting SARS-CoV-2 antigen or as a serological tool by measuring host immune response, is highly appealing. LFI is rapid, low cost, equipment-free, scalable for mass production and ideal for point-of-care settings. In this review, we first summarize the principle and assay format of these LFIs with emphasis on those that were granted emergency use authorization by the US Food and Drug Administration followed by discussion on the specimen type, marker selection and assay performance. We conclude with an overview of challenges and future perspective of LFI applications.

18.
Talanta Open ; 7: 100201, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2259081

ABSTRACT

To help meet the global demand for reliable and inexpensive COVID-19 testing and environmental analysis of SARS-CoV-2, the present work reports the development and application of a highly efficient disposable electrochemical immunosensor for the detection of SARS-CoV-2 in clinical and environmental matrices. The sensor developed is composed of a screen-printed electrode (SPE) array which was constructed using conductive carbon ink printed on polyethylene terephthalate (PET) substrate made from disposable soft drink bottles. The recognition site (Spike S1 Antibody (anti-SP Ab)) was covalently immobilized on the working electrode surface, which was effectively modified with carbon black (CB) and gold nanoparticles (AuNPs). The immunosensing material was subjected to a multi-technique characterization analysis using X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with elemental analysis via energy dispersive spectroscopy (EDS). The electrochemical characterization of the electrode surface and analytical measurements were performed using cyclic voltammetry (CV) and square-wave voltammetry (SWV). The immunosensor was easily applied for the conduct of rapid diagnoses or accurate quantitative environmental analyses by setting the incubation period to 10 min or 120 min. Under optimized conditions, the biosensor presented limits of detection (LODs) of 101 fg mL-1 and 46.2 fg mL-1 for 10 min and 120 min incubation periods, respectively; in addition, the sensor was successfully applied for SARS-CoV-2 detection and quantification in clinical and environmental samples. Considering the costs of all the raw materials required for manufacturing 200 units of the AuNP-CB/PET-SPE immunosensor, the production cost per unit is 0.29 USD.

19.
Int J Mol Sci ; 24(1)2022 Dec 31.
Article in English | MEDLINE | ID: covidwho-2246853

ABSTRACT

In this article, we report the development of an electrochemical biosensor for the determination of the SARS-CoV-2 spike protein (rS). A gold disc electrode was electrochemically modified to form the nanocrystalline gold structure on the surface. Then, it was further altered by a self-assembling monolayer based on a mixture of two alkane thiols: 11-mercaptoundecanoic acid (11-MUA) and 6-mercapto-1-hexanol (6-MCOH) (SAMmix). After activating carboxyl groups using a N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide hydrochloride and N-hydroxysuccinimide mixture, the rS protein was covalently immobilized on the top of the SAMmix. This electrode was used to design an electrochemical sensor suitable for determining antibodies against the SARS-CoV-2 rS protein (anti-rS). We assessed the association between the immobilized rS protein and the anti-rS antibody present in the blood serum of a SARS-CoV-2 infected person using three electrochemical methods: cyclic voltammetry, differential pulse voltammetry, and potential pulsed amperometry. The results demonstrated that differential pulse voltammetry and potential pulsed amperometry measurements displayed similar sensitivity. In contrast, the measurements performed by cyclic voltammetry suggest that this method is the most sensitive out of the three methods applied in this research.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antibodies , Electrodes , Biosensing Techniques/methods , Electrochemical Techniques/methods , Gold/chemistry
20.
Microelectron Eng ; 267: 111912, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2244854

ABSTRACT

COVID-19 has spread worldwide and early detection has been the key to controlling its propagation and preventing severe cases. However, diagnostic devices must be developed using different strategies to avoid a shortage of supplies needed for tests' fabrication caused by their large demand in pandemic situations. Furthermore, some tropical and subtropical countries are also facing epidemics of Dengue and Zika, viruses with similar symptoms in early stages and cross-reactivity in serological tests. Herein, we reported a qualitative immunosensor based on capacitive detection of spike proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. The sensor device exhibited a good signal-to-noise ratio (SNR) at 1 kHz frequency, with an absolute value of capacitance variation significantly smaller for Dengue and Zika NS1 proteins (|ΔC| = 1.5 ± 1.0 nF and 1.8 ± 1.0 nF, respectively) than for the spike protein (|ΔC| = 7.0 ± 1.8 nF). Under the optimized conditions, the established biosensor is able to indicate that the sample contains target proteins when |ΔC| > 3.8 nF, as determined by the cut-off value (CO). This immunosensor was developed using interdigitated electrodes which require a measurement system with a simple electrical circuit that can be miniaturized to enable point-of-care detection, offering an alternative for COVID-19 diagnosis, especially in areas where there is also a co-incidence of Zika and Dengue.

SELECTION OF CITATIONS
SEARCH DETAIL